On the Density of Sets Avoiding Parallelohedron Distance 1

Philippe MOUSTROU Institut de Mathématiques de Bordeaux

In this joint work with C. Bachoc, T. Bellitto and A. Pêcher, we study the density of sets avoiding distance 1 in \mathbb{R}^n .

Let $\|\cdot\|$ be a norm on \mathbb{R}^n . We consider the so-called unit distance graph G associated with $\|\cdot\|$: the vertices of G are the points of \mathbb{R}^n , and the edges connect the pairs $\{x,y\}$ satisfying $\|x-y\|=1$. We define $m_1(\mathbb{R}^n,\|\cdot\|)$ as the supremum of the densities achieved by independent sets of G. The number m_1 was introduced by Larman and Rogers (1972) as a tool to study the measurable chromatic number $\chi_m(\mathbb{R}^n)$ of \mathbb{R}^n for the Euclidean norm.

The best known estimates for $\chi_m(\mathbb{R}^n)$ and $m_1(\mathbb{R}^n, \|\cdot\|)$ present relations with Euclidean lattices, in particular with the sphere packing problem: for instance the best known lower bound on $m_1(\mathbb{R}^2, \|\cdot\|_2)$ has been obtained by using the optimal sphere packing in the plane, given by the hexagonal lattice.

The determination of $m_1(\mathbb{R}^n, \|\cdot\|)$ for the Euclidean norm is an open question for all dimensions $n \geq 2$. We study this problem for norms whose unit ball is a convex polytope that tiles space by translation. In that case, C. Bachoc and S. Robins conjectured that $m_1(\mathbb{R}^n, \|\cdot\|) = \frac{1}{2^n}$. Voronoi conjectured that the polytopes that tile space by translation are, up to affine transformations, Voronoi regions of lattices. This conjecture was proved by Delone for dimensions $n \leq 4$.

We prove Bachoc and Robins conjecture for n=2 and for some families of Voronoi regions of lattices in higher dimensions. To do so, we turn the problem into a discrete problem, and we obtain our results by solving a packing problem in lattices.